Photo by USDA NRCS

Soil Health Success: Herriman Farm Highlights Economic & Environmental Benefits of Soil Health Management

Last updated on February 14th, 2024

Adapted from American Farmland Trusts’ Herriman Farms Soil Health Case Study.

CLICK TO READ ARTICLE'S KEY POINTS
  • After facing setbacks from a flood and poor crop yields, Scotty Herriman who farms 2,000 acres in Oklahoma, learned about the benefits of soil health practices and received support through USDA’s NRCS to transition away from conventional methods.
  • The soil health methods he implemented, including no-till, cover crops, and enhanced nutrient management, led to increased yields, reduced erosion, and lowered greenhouse gas emissions:
  • A partial budget analysis showed that soil health practices increased Scotty’s net income by $4 per acre annually, with a 7% ROI. He also experienced yield increases, boosting soybean yield by 5 bushels per acre and corn yield by 40 bushels per acre.
  • Various programs, like EQIP and CIG, support farmers in adopting soil health practices, improving financial and environmental outcomes. Federal Farm Bill programs and initiatives like the Partnership for Climate-Smart Commodities can further promote these practices.
  • Scotty’s experience emphasizes the learning curve and importance of sharing success stories to encourage informed conservation decisions in agriculture.

Scotty Herriman farms 2,000 acres near South Coffeyville, Oklahoma, with his wife, Jo. They grow corn and soybeans, and occasionally grain sorghum (milo) and wheat. After a historic flood in 2007 resulted in only 13 profitable acres, followed by a poor crop yield in 2008, it became clear to Scotty that he needed to change the way he farms his land.

Scotty heard about other farmers who had had success with practices like no-till farming  – which is planting agricultural crops without any plowing or tillage. A visit to his local USDA Natural Resources Conservation Service (NRCS) field office in 2010 finally changed Scotty’s mind. He learned he could use assistance through the Environmental Quality Incentives Program (EQIP) to switch to no-till. Just like that, decades of conventional farming went out the window. “We switched overnight,” Scotty said.

In recent years, more and more farmers in the U.S. have been adopting farming practices that provide multiple benefits for the farmer, the environment, and our climate. These strategies go by many names – regenerative agriculture, climate-smart agriculture, conservation agriculture – but they all refer to a suite of farming practices that improve soil health. This, in turn, sustainably improves farm productivity, enhances the resilience of land to drought and flooding, and provides a number of environmental benefits, including cleaner drinking water, increased carbon storage in the soil, and reduced greenhouse gas emissions.

BENEFITS OF NO-TILL FARMING

“No-till farming protects the soil from excessive erosion, reduces soil aeration from tillage, allows organic matter to accumulate and improves the overall health of the soil. Switching can also help you reduce input costs and, thus, boost your bottom-line profits. It is part of an integrated effort to conserve the nation’s natural resources.”

U.S. Department of Agriculture’s Natural Resources Conservation Service (USDA-NRCS)

From Adversity to Achievement: Scotty’s Experience with No-till, Cover Crops, and Enhanced Nutrient Management

In 2010 Scotty adopted no-till soybeans and reduced-tillage corn. While this has led to some increased use of herbicide, adopting no-till has saved Scotty time, reduced equipment maintenance costs, and has led to significant positive changes in his soil. For example, Scotty sees that root channels from prior year plantings run deeper into the ground, which improve soil infiltration and create a more stable and resilient soil structure. Scotty has also seen higher quality crop stands that are less stressed by drought and pests due to increased crop vigor.

With the goal of reducing herbicide use, Scotty adopted cover crops, primarily cereal rye in 2016. Cover crops are sown when a primary cash crop is not present, as an alternative to fallow, or bare soil. Cover crops have been shown to slow soil erosion, improve soil health, enhance the availability of water, smother weeds, and help control pests. They also increase the total amount of photosynthesis that takes carbon from the atmosphere, which can increase the amount of carbon added to the soil every year. While planting cover crops has led to only a slight reduction in Scotty’s herbicide use, he has observed that they leave a mulch layer an inch thick on top of his soil, which he believes has increased soil moisture retention – making his land more resilient to drought. “A couple of years ago I noticed things started to come on stronger,” Scotty says. “I won’t say we were penalized those first 2 years, but it was after that 2-year period the yields were coming on strong. Weather patterns were the same, water intake was good, so after just a little period of questions and small doubts, that 3-year window everyone talked about opened up and crops have been improving ever since.”

In 2016, Scotty also modified his nutrient management practices. He now ensures that the amount of nitrogen applied to agricultural fields by synthetic fertilizers does not exceed the amount the plants can absorb and minimizes unwanted losses by switching from dry to a split application of a liquid fertilizer blend. This reduces excess nitrogen from being released to the atmosphere in the form of nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide. It also prevents nutrient pollution in rivers and lakes, which can reduce the quality of drinking water and cause algal blooms and dead zones. While his nutrient costs increased, the modeled estimates for losses of nitrogen and phosphorus on his land dropped substantially as a result of the no-till, cover crops, and nutrient management practices Scotty employed. 

Soil Health Management Benefits Farmers, Climate, and the Environment

To better understand the financial impact implementation of these practices had on Scotty’s operation, American Farmland Trust and the Oklahoma Conservation Commission worked together to conduct partial budget analysis to analyze the marginal benefits and costs of adopting cover crops, strip-till corn, no-till soybeans, and nutrient management changes on the 350 acres of Scotty Herriman’s 2,000-acre farm where all of the practices were adopted. The analysis used a combination of published machinery and material cost estimates and farmer-provided data to estimate the cost of operations, on average, before and after soil health practice adoption. The analysis was limited to only those income and cost variables affected by the adoption of these practices. 

The results of the study highlighted the win-win nature of these solutions – they can be good for farmers, and are certainly beneficial for our climate and the environment as a whole. The analysis found that Scotty’s net income increased by $4 per acre per year after he adopted the soil health practices described earlier, for a net increase of $1,402 a year – a 7% return on investment. Scotty attributes 25% of his corn and soybean yield increases since 2010 to his adoption of soil health practices, thus accounting for a benefit of $28 per acre each year. Scotty’s average annual soybean yield has increased overall by 5 bushels an acre, and his corn yield has increased by 40 bushels an acre. Scotty says he also knows he’ll realize tangible assets of no-till during his farming career. In 2014 he saw 260-bushel dryland corn and he’s hit several years of 200+ bushel corn since switching to no-till. He entered a yield contest and won it four times in 6 years with his dryland no-till corn. This is what he shares with critics, that he implemented no-till and it works.

While Scotty’s herbicide costs have increased by $7 per acre per year, his machinery costs have decreased by $32 per acre per year since his adoption of no-till and strip-till thanks to fewer mechanical issues, less overall machinery maintenance costs, less fuel needed, and increased time savings. 

As a result of the combined soil health practices, erosion has decreased by 1 ton per acre per year, as estimated by USDA’s Nutrient Tracking Tool (NTT), worth $713 per year across the study area based on the $1.18/ton value of soil nutrients no longer running off, and Scotty’s estimated $300 a year in reduced mechanical erosion repair costs. In addition to the economic benefits Scotty has experienced, he has noticed benefits to his soil structure and biota. Scotty has observed less soil compaction, an increase in earthworm activity, and higher levels of soil organic matter. 

To estimate the water quality and climate benefits of these soil health practices, researchers used NTT and COMET-Farm tools on a 60-acre, representative field. Scotty’s use of cover crops, strip-till, no-till, and nutrient management reduced nitrogen, phosphorus, and sediment losses by 73%, 22%, and 86%, respectively, as estimated by NTT. Further, his combined soil health practices resulted in a 54% reduction in total greenhouse gas emissions as estimated by the COMET-Farm Tool, corresponding to taking 3.9 cars off the road.  While this may seem like a small number, there is enormous potential for scaling these benefits – especially considering the 396 million acres of cropland in the U.S.

USDA Cropland (USDA & Esri 2022). Feature layer by SEGS_GPO, licensed under the US EPA Data Licensing Agreement for public use.

Support is Available to Help Farmers Like Scotty Herriman Adopt Soil Health Management Practices

A number of federal and state programs are available to help farmers like Scotty Herriman adopt soil health practices – many of which are supported by the federal Farm Bill. To aid his transition to no-till, Scotty received support through the Environmental Quality Incentives Program (EQIP), which provides financial and technical assistance to farmers to help them integrate conservation farming practices into their lands. When Scotty planted cover crops on his land, he partnered with Oklahoma State University, the Oklahoma Conservation Commission and the NRCS Conservation Innovation Grants Program (CIG), which worked with him to study the influence cover crops had on soybean and corn productivity. Scotty also receives $5 per acre/year from the USDA Risk Management Agency Cover Crop Program to support continued implementation of cover crops. The financial assistance Scotty received from these programs was not factored into the cost-benefit analysis conducted by American Farmland Trust, indicating the benefits of soil health practices outweigh the costs even without federal assistance. 

Farm Bill agriculture programs, coupled with new efforts like the Partnership for Climate-Smart Commodities, can play a key role in scaling up adoption of these practices nationwide – not only by providing financial and technical assistance to farmers, but also supporting the research, data collection, reporting and verification necessary to continue improving our understanding of the benefits of soil health management.

Closing Thoughts

Herriman Farms has benefited from soil health practices, but Scotty recognizes the challenges that come with getting started. “It’s a learning curve. Learning how to work in harmony with the weather, resisting the urge to break out the plow when things didn’t go exactly how I envisioned, and timing the planting windows to get the most benefit of moisture while staying ahead of weeds,” he said to emphasize the effort required to forge the right soil health management system. Scotty believes in the importance of sharing his story to help others make informed decisions about conservation practices. He celebrates his healthy soil and looks forward to the lasting benefits of his hard work.


Additional Resources

Notes:

All values are in 2020 dollars.

• Prices used: Corn: $4.30/bu, Soybeans: $11.15/bu (USDA NASS, Feb 2021, Crop Values: 2020 Summary); Nitrogen: $0.34/lb, Phosphate: $0.39/lb (ISU Extension and Outreach, Jan 2021, Ag Decision Maker: Estimated Costs of Crop Production in Iowa).

• Value of decreased erosion ($1.18/ton) is based on estimated N & P content of the soil (2.32 lbs N/ton, 1 lb P/ton) and fertilizer prices (USDA NRCS, May 2010, Final Benefit-Cost Analysis for the EQIP) and Scotty’s estimate of reduced mechanical erosion repair costs.

• Return on Investment is the ratio of Annual Total Change in Net Income to Annual Total Decreased Net Income, as a percent. 

For information about:

(1) study methodology, see farmland.org/soilhealthcasestudies
(2) USDA’s NTT, see ntt.tiaer.tarleton.edu/; and 
(3) USDA’s COMET-Farm Tool, see comet-farm.com

This material is based on work supported by a USDA NRCS CIG grant (NR183A750008G008) and a grant from the Oklahoma Conservation Commission. Scotty received $5/ac/yr through the USDA Risk Management Agency Cover Crop Program (2016–present). This is not included in the analysis because cost-share is temporary and not received by all.